Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus.

نویسندگان

  • Robert A Cramer
  • Jason E Stajich
  • Yvonne Yamanaka
  • Fred S Dietrich
  • William J Steinbach
  • John R Perfect
چکیده

Fungi from the genus Aspergillus are important saprophytes and opportunistic human fungal pathogens that contribute in these and other diverse ways to human well-being. Part of their impact on human well-being stems from the production of small molecular weight secondary metabolites, which may contribute to the ability of these fungi to cause invasive fungal infections and allergic diseases. In this study, we identified one group of enzymes responsible for secondary metabolite production in five Aspergillus species, the non-ribosomal peptide synthetases (NRPS). Hidden Markov models were used to search the genome databases of A. fumigatus, A. flavus, A. terreus, A. nidulans, and A. oryzae for domains conserved in NRPS proteins. A genealogy of adenylation domains was utilized to identify orthologous and unique NRPS among the Aspergillus species examined, as well as gain an understanding of the potential evolution of Aspergillus NRPS. mRNA abundance of the 14 NRPS identified in the A. fumigatus genome was analyzed using real-time reverse transcriptase PCR in different environmental conditions to gain a preliminary understanding of the possible functions of the NRPSs' peptide products. Our results suggest that Aspergillus species contain conserved and unique NRPS genes with a complex evolutionary history. This result suggests that the genus Aspergillus produces a substantial diversity of non-ribosomally synthesized peptides. Further analysis of these genes and their peptide products may identify important roles for secondary metabolites produced by NRPS in Aspergillus physiology, ecology, and fungal pathogenicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron.

Three non-ribosomal peptide synthetase genes, termed sidD, sidC and sidE, have been identified in Aspergillus fumigatus. Gene expression analysis by RT-PCR confirms that expression of both sidD and C was reduced by up to 90% under iron-replete conditions indicative of a likely role in siderophore biosynthesis. SidE expression was less sensitive to iron levels. In addition, two proteins purified...

متن کامل

Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species

Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified ove...

متن کامل

A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cl...

متن کامل

Production of Non-Ribosomal Peptide Synthetase (NRPS)- Dependent Siderophore by Aeromonas Isolates

Background: Aeromonas species are Gram-negative ubiquitous bacteria, facultative anaerobic rods that infect both invertebrates and vertebrates. Various fish species develop hemorrhagic disease and furunculosis due to Aeromonas spp. Aeromonas strains generate certain active compounds such as siderophores, which are the final products of non-ribosomal peptide synthetase (NRPS) activity. The prese...

متن کامل

Various mechanisms in cyclopeptide production from precursors synthesized independently of non-ribosomal peptide synthetases.

An increasing number of cyclopeptides have been discovered as products of ribosomal synthetic pathway. The biosynthetic study of these cyclopeptides has revealed interesting new mechanisms for cyclization. This review highlighted the recent discoveries in cyclization mechanisms for cyclopeptides synthesized independently of non-ribosomal peptide synthetases, including endopeptidase-catalyzed cy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Gene

دوره 383  شماره 

صفحات  -

تاریخ انتشار 2006